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The work described in this report was undertaken as part of
the program on the Hazards of Electromagnetic Radiation to

Ordnance (HERO). It describes theoretical calculations whi
attempt to show how the temperature of a wire bridge EED is
elevated by repeated radar pulses.

The work should be of interest to those working on the HERO
program, to those using electro-explosive devices in ordnan
applications, and to those actively designing, developing,
testing electro-explosive devices.
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CHARACTERIZATION OF SQUIB,MK 1 MOD O:
Thermal Stacking from Radar-Like Pulses (U)

1. INTRODUCTION

1.1 The mechanism of inlitiation of wire bridge electro-
explosive devices (EEDs) has been studied at this Laboratory
in conslderable detail, An electro-thermal model has been
proposed (reference (1)) which states that the explosive 1is
triggered when the wire bridge has been ralsed to a particular
temperature by "IZ2R", or ohmic, heating of the bridgewire.
Experimental data obtained to date have not required an altera-
tion of the basic premise.

1.2 These studles have been of particular interest to,
and have been in large supported by, the HERO (Hazards of Electro-
magnetic Radiation to Ordnance) program. In assessing the
vulnerablility of an EED to specific electrical environments, 1t
is desirable to be able to predict the probability of 1its
response to various types of electrical inputs.

1.3 The present report deals with the computation of the
temperature-time relationships of the bridgewire of an EED when
it 1s subjected to a radar-like train of RF bursts or pulses.
The general theory of the electro-thermal model, the digital
computation methods, generalizations, and a nomogram of typical
results will be given in this report.

1.4 The Squib, Mk 1 Mod O, has been studied in great detail
by the Naval Ordnance Laboratory. It 1s considered to be typi-
cal or at least analogous to the wire bridge EEDs in general use
in the explosives field. Thus, while the theory and detailed
computations have been applied directly to this particular EED,
it 1s firmly bellieved that the work herein can be applied
directly, or with little change, to many other specific EEDs.

It will therefore be left to the reader to make such adaptations
or extenslions as may be necessary to sult hls individual needs
rather than to give a broader and more comprehensive treatment
to the subject.
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2. THEORY

2.1 The Squib, Mk 1 Mod O, (shown in Figure 1) has been
considered as a lumped parameter system. The platinum-iridium
bridgewire plus its ilmmediate surroundings (explosive when
loaded, air before loading, or explosive simulant when dummy
loaded5 has a heat capacity represented by Cp. It 1s assumed
that Cp 1s independent of the bridgewire temperature.

2.2 The disslpation of electrical energy in the bridgewlre
causes the bridgewire to be elevated in temperature by an amount,
©. The bridgewire 1ls known to be cooler at the ends than in the
center because of the cooling of the support posts. For
simplicity, the bridgewilre temperature is considered to be an
average of the temperature along its length. The hottest point
on the wire willl be the most likely to cause initiation. Yet,
experimentally, this hottest polint Jdoes not differ markedly from
the average temperature.

2.3 A steady state condition of electrical energy dissipa-
tion in the bridgewire will lead to a corresponding steady state
fflow of thermal energy into the support posts and into the
explosive, or simulant, in contact with the bridgewire. Under
these steady state conditions the heat energy flow, and therefore
the electrical energy input, will be proportional to the tempera-
ture elevation, ©., The proportionality constant, y , 1s
designated as the heat loss factor.

2.4 These parameters can be combined in an instantaneous
energy-balance equation

Cp gg + Yo =P(t),

~share P(t) 1s the power time function.

From this differential equation © (t) functions can be derived
~which describe the thermal response of the EED bridgewire to
various electrical input wave-forms. Experimental verification
of the equation 1s facllitated by the technique of using the

EED bridgewire as its own resistance thermometer. The change

of bridgewire resistance with temperature can be expressed

(using again the idea of lumped constants and of © as the average
briigewire temperature elevation) by

R=R (1 + o)
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where R 18 the resistance of the EED at a stated reference
temperature.

and o 1is the corresponding temperature coefficient of
resistance measured for a temperature change from
this same stated reference temperature.

This relationship 1is based on the assumption that the resistance
varles linearly with the temperature throughout the practical
temperature range.

2.5 Because of the low resistance of the EED compared to
the probable magnitudes of source impedances that might be
expected in weapon circultry carrying RF power, 1t was decided
to conslder the case for constant-current pulse trains. An
additional reason for this choice is that, for EEDs with a
positive value of the coefficlent, o , heating of the bridge-
wire ralses 1its resilstance and therefore increases the power
it absorbs, even though the pulse amplitude is unchanged.*
Constant current pulse data would therefore provide a conser-
vative basis for making system safety estimates. The differ-
ential equation expressing the lumped parameter behavior under
constant current input conditions 1is:

c 32 +Y6 = I°R (1 +40) (1)

which can be solved to yield

I2R o2
o = _ IR -y . W 2
= IéRd- ! =P ( Cp > $2

where W 1s the pulse length
and 6y 1is the temperature at the end of the pulse.
2.6 Whenever the bridgewire temperature 18 above ambient

with no power appllied, the differential equation expressing the
bridgewire cooling will be found to apply:

dt

¥Positive values of « cause constant voltage pulses to deliver
less power as the temperature rises, i.e.,
o

P = E2 = P

E (1 +&0) 1 +L£90
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Taking time, t, measured from the instant the power is removed
and cooling begins, and taking the bridgewire temperature to be
Oy at the instant t = O, equation (3) can be solved:

T 7"_[
c

©c = Oy exp |~ yte | om exp |~ _te I (4)
2

where 77, the thermal time constant, equals

t. 18 the cooling time between current pulses,

and ©c 18 the temperature at the end of the cooling time.

2.7 To obtain the temperature-time history of an EED
subjected to a train of constant current pulses it 1s necessary
to apply equations (2) and (4) in alternation in as many cycles
as may be appropriate to the study.

2.8 If the cooling portion of the cycle 1is long compared to
7Tthe bridgewire will return to amblient temperature at the end -
of the cycle. In this case each cycle wlll repeat the history
of the precedling cycle. If the pulse repetition frequency,
that 1s the frequency at which the pulses are repeated, 1s
Increased by decreasing the coolling portion of the cycle beyond
a certain point, then at the beginning of the pulse train the
loss of heat durling cooling will be less than the gain during
the heating portlon of the cycle. In thils case the temperature
o the bridgewire will be greater for one cycle than it was
for the preceding one. As a result of this 1ncrease in temp-
erature both the rise and fall of temperature during the heating
and cooling portions of the cycle are increased. However, sir-e
the increase 1in the rise of temperature durlng the heating portion
of one cycle with respect to that of the preceding cycle is
linear and the fall in temperature during the cooling portion
increases exponentially, the loss of heat due to cooling will
eventually become equal to the gain in heat during the heating
portion and the temperature of the wire again goes through a
stable history from one cycle to the next as shown in Figures
2 and 3. If the input energy in the constant current pulses is
high enough then the bridgewire temperature will rise high enough
to initiate the explosive surrounding it. If the energy is not
high enough the bridge temperature will stabilize at a value
lower than the ignition temperature of the surrounding explosive.
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3. COMPUTATIONS AND RESULTS

3.1 An IBM 704 Computer was programmed to express the
constant current heating with alternate natural cooling. The
Fortran Program 1is given in Appendix A. The input data for the
IBM 704 program consisted of the current, the initial resistance,
the repetition frequency, the pulse width, and the thermal para-
meters; Jy , &, and Cp. Using these data and equation (2), the
program computed the gemperature of the bridgewire at the end
of the heating portion of the cycle. Having obtained this
result equation (4) was used to find the temperature at the end
of the cooling portion of the cycle. The resistance of the
bridgewire which corresponded to these temperatures was also
calculated. The program also computed the energy absorbed 1in
the heating portion of each cycle. The computation was then
repeated using the temperature and resistance at the end of the
cooling portion of the cycle as the values for the start of the
next cycle. After each cycle tests were made of the maximum
temperature of the cycle, the increase in this temperature over
that of the preceding cycle, and the number of cycles computed.
These values were compared with preassigned values of these
quantities. Computation ceased after the preassigned number of
cycles or if the temperature exceeded the preassigned value for
the maximum temperature, which usually was 2,000°C, or if the
increase in temperature over the precedling cycle was less than
one half of one percent. Otherwlise, computation proceeded to
the next cycle.

3.2 The initial resistance in almost all cases was taken to
be 1.0 ohm. Pulse repetition frequencies from 60 to 3,000 cycles
per second were studled. 1In most cases the on time for the pulse
was short compared with the total time of the cycle and small
compared to the thermal time constant 7~. Under these conditions
the cooling portion of the cycle can be considered to be independ-
ent of the pulse wldth., The temperature rise during a pulse will
be a function of the energy. Thus, for any given pulse frequency
the same maximum peak temperature wlll be reached for any com-
binatlon of current, resistance, and pulse width for which the
product I2RW 1s constant.,

3.3 Results printed out (Figure 4) included the resistance
and temperature at the beginning and end of the heating portion
of the cycle, the energy of the heating portion of the cycle,
and the total energy used in this and previous cycles. Compu-
tations were carried out for different combinations of current,
pulse repetition frequency, and pulse width selected so as to
give maximum peak temperatures of 2,000°C or less. 0

3.4 It was found that if the logarithm of I is plotted against
the logarithm of the pulse width for any given frequency and
maximum temperature, the result is very nearly a straight 1line.
This was done for several representative frequencie s and

5
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is shown in Figures 5 and 6. In each case lines were drawn
representing temperatures of 300, 500, and 1,000°C. The results
of the calculations §an all be combined into a single graph in
which the product I2RW is the ordinate and the pulse repetition
frequency 1s the abscissa., The results can be shown by drawing
contour 1lines representing the attained maximum peak temperature
(Figure 7). In order to locate these contour lines it was
convenient to use a method of computation which would have a
given temperature as part of the input data and calculate the
point corresponding to this temperature for some given comblna-
tion of the other variables,

3.5 Appendix B gives the program as it was modified to
accomplish this result. The modified program was arranged to
find the pulse width which would give the desired maximum peak
temperature for a given pulse repetition frequency. This is
done by repeated interpolations between previously determined
pairs of values of the pulse width and temperature. The program
begins with two pulse widths and thelr corresponding maximum
temperatures. It then interpolates or extrapolates for the
pulse width corresponding to the desired temperature. Using
this value of the pulse width it then computes the maximum peak
temperature as in the previous program. This temperature 1is
compared with the desired temperature. If the difference is less
than 5°C, the computation ceases. Otherwise, the new pulse width
and temperature replace one of the previous pairs of values and
the process is repeated. One of the original pairs of pulse
width and temperature values can be taken to be zeros; the other
pair may be merely an estimate for which no great accuracy 1s
required. The process will find a satisfactory value for the
pulse width within a few iterations.

o

3.6 Values of 1°RW for frequencles of pulse repetition
frequency from twenty to two thousand cycles per second giving
maximum peak temperatures of 300, 500, and 1,000°C above ambient
temperature were computed in this way and are given in Table 1.
These results arec also shown graphically with contour lines for
the maximum temperatures drawn., In order to simplify the location
of the ordinate value for this graph, a simple nomogram was
designed which gjves the ordinate for known values of I and W
with resistance R. The nomogram 1s shown in Figure 8. These
computations used typical values of the thermal parameters: ),
600 microwatts per degree; &k, 705 parts per million per degree®
and Cp, 2.4 microjoules per degree. A few calculations
were made using a value for & of S00 parts per million per
degree. Temperature reached under these condlitions are higher

*1t should be noted that of 18 a temperature dependent constant
and must be selected to correspond to the base temperature from
which resistance calculations are made., If the base temperature
or base resistance changes then ol must also be changed.

6
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than for the smaller value of oL. The difference is greater
when comparing the maximum peak temperature than when comparing
the first pulses. For the first pulse the difference 1is of the
order of 5%. At higher frequencies the maximum peak temperatures
differ by about 15%. Utilization of the computational technique
therefore requires a realistic choice of numerical values for
the various parameters. Experience to date has shown that the
determination of is less subject to experimental error and 1is
less varlable than that of the other parameters. The determina-
tion of y and Cp is the least precise since the error of their
determination must include the error of determination of & .

The extremes of the individual values of the most variable
parameter rarely exceed 0.6 to 1.5 times the central value.

4, CONCLUSIONS

4.1 The results obtained in this investigation have been
summarized in Table 1 and as a nomograph (Figure 8). The table
gives initial conditions which determine the pulse s8ize required
to heat one particular type of bridgewire ultimately to a maximum
peak temperature of 300, 500, or 1,000°C above ambient for pulse
repetition frequencies from 20 to 2,000 cycles per second. The
initial conditions are most conveniently expressed as a pseudo-
energy per burst term in units of microjJoules per burst. This
term 18 computed on the assumption that the pulse power 1s main-
tained at its initial value (the power level before any bridge-
wire resistance change occurs). The actual pulse energy will,
of course, be greater than this due to the heating and corres-
ponding reslistance increase of the bridgewire,

4.2 The computed results can be used to assess the expected
response of anp EED to a particular electromagnetic energization.
If values of R, d, ), and Cp are known for a particular EED,
it 1s possible to compute the lnterrelationships between:(a)
maximum peak temperature, (b) pulse repetition frequency, and
(¢c) initial pulse magnitude (which in turn can be broken down
to pulse width and initial pulse amplitude). For instance,
for the Squib,Mk 1 Mod O, a temperature rise of 500°C would
be expected at a pulse repetition frequency of 2,000 cycles per
second for a 1O0-ampere pulse with a pulse width of 1.] microsecond.
The same temperature would be attailned at pulse repetition fre-
quencies below approximately 30 cycles per second for the same
current amplitude provided the pulse width were 10.5 mlcroseconds.

4.3 Once the temperature can be deduced the probabllity of
initiation of the EED can in turn be estimated provided informa-
tion i1s avallable as to the temperature which will cause initia-
tion of the EED. This information usually can be found
experimentally from DC pulse firing data. Inference of the

7
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necessary temperature based on the "Hot-Spot" Theory of Bowden
and Yoffee (reference (a)) has been found to give satisfactory
results (reference (3)).

4.4 Subsequent to the work herein reported a technique was
devised to monitor the bridgewire heating and cooling of EEDs
being energized by microwave energy from a §-KMC radar. Quali-
tative and preliminary quantitative comparilison show agreement
between results and predicted values indicating that the
phenomena of thermal stacking and the appearance of the time-
temperature wave-forms as they are described herein are in
accord with experiment.




NOLTR 61-108

Table 1

Relationship Betwecn I2Rw (microjoules),
Pulse Repetition Frequency, and Equillibrium Peak Temperature

PULSE
REPETITION EQUILIBRIUM PEAK
FR%SEEECY 00 TEMP%%STURE (°c) —
20 653.1 1029.2 1819.9
40 652.3 1026.7 1814 .7
60 642.3 1009.8 1778.3
100 594.5 928.4 1608 .4
140 530.9 827.7 1406.1
200 452.6 695.1 1156.0
250 398.3 606.8 1019.3
300 353.9 539.4 878.5
600 211.5 315.7 505.0
1000 137.7 205.2 324.3
1400 103.0 152.6 240.1
2000 T4.6 110.9 172.4
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APPENDIX A

A-]l, Fortran II 1s an Automatic Programming System of
Formula Translation. It is a method of rewriting mathematical
relations in a symbolic form which can be converted by a high
speed digital computer into a productive sequential computa-
tional procedure. Fortran 11 can now be interpreted by a
number of different makes of high speed computers.

A-2. Pages A-3 and A-4 are a photographically reproduced
copy of the Fortran II listing of the computational program
described in Paragraph 3.1. An exact keypunch duplication of
this 1listing, one card per line, indluding all spaces within
each line, should produce a source deck which can be compiled
by any activity to whom Fortran II is avallable.

A-3., A description follows of each of the program
symbols of quantities required for the computations.

Program TMAX Upper bound of computed temperature of
Symbols: EED bridgewire 1in degrees Centigrade.
pPC Ratio of maximum temperature attained

in one pulse to that of preceding pulse
which 1s considered to represent a
stable temperature condition.

NMAX Maximum number of pulses to be computed.
CUR Constant current in amperes.

RZ Initial resistance in ohms.

RATE Pulse repetition frequency in cycles

per second.

TP Time in seconds during which the
constant current flows 1in each pulse.

GAM Heat loss factor, Gamma, in watts per
degree Centigrade.

ALF Temperature coefficient of resistivity,
Alpha, in ohms per ohm per degree
Centigrade.

Cp Heat capacity in Jjoules per degree
Centigrade.

A-1




Program
Symbols:

Tl
R1
T2

R2

T3

R3

TLST
TS
PENG
ENG
TIME

NOLTR 61-108

APPENDIX A (cont'd)

Temperature at the beglinning of pulse.
Reslstance at the beginning of pulse,

Temperature at end of heating portion
of cycle.

Resistance at end of heating portion
of cycle.

Temperature at end of cooling portion
of cycle.

Resistance at end of cooling portion
of cycle.

Maximum temperature of preceding pulse.
Length of cooling portion of cycle,.
Energy in the pulse.

Total Energy.

Total time elapsed.
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c PRCGRAM FCR FINCING TEHﬁERATURE—![ME HISTORY OF AN EEC SUBJECTYED
c TO CCNSTANT CURRENT RADAR-LIKE PULSES

S REAC INPLT TAPE 0,301, TMAX,PC.NMAX
T NA=(
10 REAC INPUT TAPE (C5302,CUR,RZ,RATE,TP,GAMsALF,CP
11 IF(RATE) 115,115,112
12 IF(1.0-TP#RATE) 115,115,16
16 T1=0.0
17 RI=RZ
19 TLST=T1
20 N=0
21 ENG=0.0
23 7S=1.0/RATE~TP
24 EXP=0.36787944ee(TSeGAM/CP)
28 WRITE CUTPLT TAPE 04304, CULR,RZ,RATE,TP,GAM,ALF,CP
29 NN=AN+S
30 CSC=CUR=a22
31 ENZ=RZ#CSy
4O EN=R1#CS(
41 D=EN®ALF-GAM
42 C=CP/D
43 E=2.718281E32=(TP/C)
4y A=EN/D
45 N=N+1
4é B=AsALF
48 EC=E-1.0
SC TZ2=T1+4EC=A
ST T2=T2eEXP
52 R2=RZ#(1.04ALF«T2)
53 R2=RZ#(1.0+ALFsT3)
60 PENG=EN=TP+Be{(CsEC-TP)#ENZ
62 ENG=ENG+PENG
T4 AN=N
IS TIME=AN/RATE
76 IFINN-LO) 79,79,77
77 WRITE CUTPUT TAPE 0,307, N,PENG
NhN=C
18 GC 10 80
T9 WRITE CUTPUT TAPE 0,308, N,PENG
BC WRITE CUTPLY TAPE 0,309,TINME,ENG
B1 WRITE CUTPLT TAPE 0,310
£2 WRITE CUTPLT TAPE 0,311,T1,RI1
83 WRITE CUTPUY TAPE 0,312,7T2,R2
B PX={T242T3.C)/(TLST+273.0)
86 ITF{TMAX-T2) 7,7,87
87 IF(PC-PX) 88,7,7
eg IF{NMAX-N} 7,7,9C
90 R1=R3
91 TLST=T2
92 T1=73
93 NN=NN+6
95 GC TC 40
115 CALL RETURN
116 STCP
301 FCRMAT(F9.0,F9.L4,19)
3C2 FCRMAT(3F8.C,,uETT. L)

304 FCRMAT(IHI6L(IH ) IBHTHERMAL PARAMETERS/10(1H )TBHCURRENT RESTIST
1ANCE PLLSES PULSE WILCTH CAMMA ALPHA CEE PEE/Z12(1 20
2H )Y TBHAMPS CHMS PER SEC MICROSECCNDS MICWTS/DEG P/ 304

A-3
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3M/DEG MICJLS/CEG/F16.2yF13.3,F11.2,6PF14.3,2F11.1,F12.3)

307 FCRMAT(IRII6( 1K ) 1IHCYCLE COUNTIIC,13{1H ) ISHENERGY IN PULSE3PF1l.
13,12H MILLIJCULES)

308 FCRMAT(IHQ16(IH )V1IHCYCLE CCUNTIIC, 13(1H )I15HENERGY IN PULSE3PF11l.
13,12H MILLIJCULES)

3C9 FCRMAT(I17(1IH )12FELAPSEC TIME3PF12.2,25H MILLISEC TCTAL ENERGY
1F11.3,12KH MILLIJCULES)

31C FCRMAT(17(Th )1IFTEMPERATURE23(IH )I0OHRESISTANCE)

311 FCRMAT(19( 'k ) 12HBEFORE PULSEFI1C.2,24H DEG C BEFORE PULSE
1F12.3,5H QHMS)
312 FCRMAT{VI9(IH YYIHAFTER PULSEF11.2,23H DEG C AFTER PULSE

1F13.3,5H OHNMS)
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APPENDIX B

B-1. Appendix B contains the Fortran II listing for the
computational program described in Paragraph 3.5 together with
a listing of symbols used in this program which were not used
in the first program. The list of symbols given in Appendix A
applies to this program as well as that in Appendix A. The
computational program consists of a main program and a sub-
routine, A photographically reproduced copy of the listing
for these programs 1s given following the list of symbols.

Program
Symbols: TBS Maximum peak temperature in degrees
Centigrade.
TPl First pulse width in seconds,
TEMP1 Maximum peak temperature in degrees

Centigrade which corresponds to a
pulse width of TPl.

TP2 Second pulse width in seconds.

TEMP2 Maximum peak temperature in degrees
Centigrade which corresponds to a
pulse width of TP2.

TPl and TEM1l may both be zeros. If it is known that one pair
of estimates is better than the other this pair should be
selected as TP2 and TEM2.
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MAIN PRCGRAM FCR FINDING PULSE LENGTH WHICH WOLLDC GIVE A STATED
FINAL TEMPERATURE USES SUBRCUTINE TEMP(TP,T2)

COMMCN TMAX,PCo NMAX,GAM,ALF,CPyCUR,RZ,RATE

REAC INPULT TAPE C41C1, TMAX,PCyNMAX,GAM,ALF,CP
REAC INPUT TAPE C,y1C2,CURJRZ,RATE,TBS,TP2,TEM2,TPI1,TEM]
IF{RATE) u4Q,4C,12
N=0
TP=TP2+4 (TBS-TEM2)#(TP2-TP1)/(TEN2-TEMI)
TP1=TP2
TEMI=TEM2
TP2=TP
N=N+1
CALL TEMP{TP2,TEM2)
IF{N-5) 38,38,10
IF(ABSF(TENM2-TBS)-5.0) 10,110,255
CALL RETLRN
ST1CP
FCRMAT(FE8.C,FB.4,18,3E11.4)
FCRMAT (4FB.042(E11.4,FB8.2))
SUBROUTINE FCR LSE WITH PRECECING PROGRAM
SUBRCUTINE TEMP(TP,T2)
CCMMCN TMAX,PCo,ANMAX,GAM,ALF,CP,CUR,RZ,RATE
NAN=C
IF{1.0-TP«RATE) 115,115,16
T1=C.0
R1=RZ
TLST=T1
N=0
ENG=0.0
TS=1.0/RATE-TP
EXP=0.36787944 e (TSeGANM/CP)
WRITE QUYPUT TAPE 0,304, CURRZ,RATE,TP,GAM,ALF,CP
NA=NN+5S
CSC=CUR®=as2
ENZ=RZ*CSy
EN=R1&CSC
D=EN®ALF~-GAM
c=CpP/0D
E=2.718281E3«a(TP/C)
A=zEN/C
N=N+1
B=AeALF
EC=E-1.0
T2=T1+¢EC»A
TI=T2eEXP
RZ2=RZ»(1.0+ALFaTZ2)
R2=RZe(1.,04ALFaT3)
PENG=EN®TP+Res(CeEC-TP)#ENZ
ENG=ENG+PENG
AN=N
TIME=AN/RATE
IF(NN-UQ) 79,719,177
WRITE CUTPLT TAPE 0,307, NLWPENG

B-2
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NN=0
78 GC 10 80
79 WRITE CUTPUT TAPE 0,308, N,PENG
8C WRITE CUTPUT TAPE 0,4309,TINELENG
81 WRITE CUYPUT TAPE 0,310
82 WRITE CUTPUT TAPE 0,311,T7T1,R1
83 WRITE CUTPUT TAPE 0,312,T2,R2
84 PX=(T24273.0)/{TLST+273.0)
86 IF(TMAX-T2) 89,89,87
87 IF(PC-PX) Et,89,89
88 IF(NMAX=N) £89,89,90
89 RETURN
90 R1=R3
91 TLST=T2
92 T1=713
93 NA=NN+6
95 GC TO 40
115 CALL RETURN

11¢ Si1CP

304 FCRMAT{IHIO6L{IH )1BHTHERMAL PARAMETERS/10(1H )YT8HCURRENT RESIST
TANCE PULSES PULSE WIDTH GAMMA ALPHA CEE PEE/V12(]
2H ) 78HAMPS OHMS PER SEC MICROSECONDS MICWTS/DEG P/

3M/DEG MICJLS/CEG/F16.2,F13.3,F11.2,6PF14.3,2F11.1,F12.3)

307 FCRMAT(IHIN6(IH I VIHCYCLE COUNTIN0, 13{(1H )ISHENERGY IN PULSE3PFI11.
13,12H MILLIJCLLES)

308 FCRMAT(IHO16(1H ) 1IHCYCLE CCUNTI 10, 13(1H )ISHENERGY IN PULSE3PFI1.
13,12H MILLIJCLLES)

309 FCRMAT(I17(1H )12HELAPSEC TIMESPF12.2,25H MILLISEC TOTAL ENERGY
1F11.3,12H MILLIJCULES)

310 FCRMAT{IT7(IH )VIHTEMPERATUREZ23(IH ) 10HRESISTANCE)

311 FCRMAT{I19(IK ) I12HBEFORE PULSEFI1C.2,24H DEG C BEFORE PULSE
1F12.3,5H OHMS)
312 FCRMAT(19{1IH )I1ITHAFTER PULSEF11.2,23H DEG C AFTER PULSE

1F13.3,5H CHMS)

B-3
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